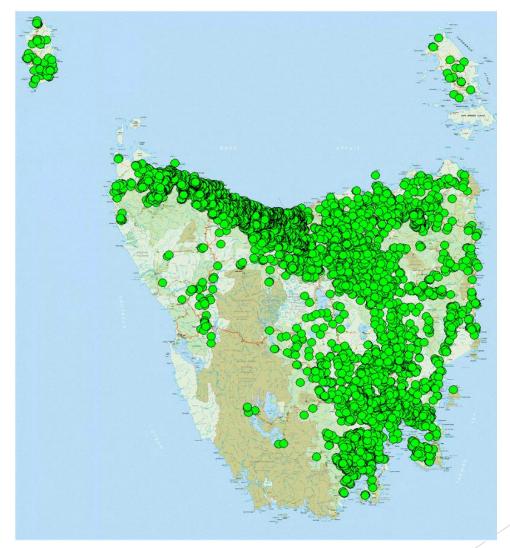
Species Richness and Composition of Farm Dams in Southeast Tasmania

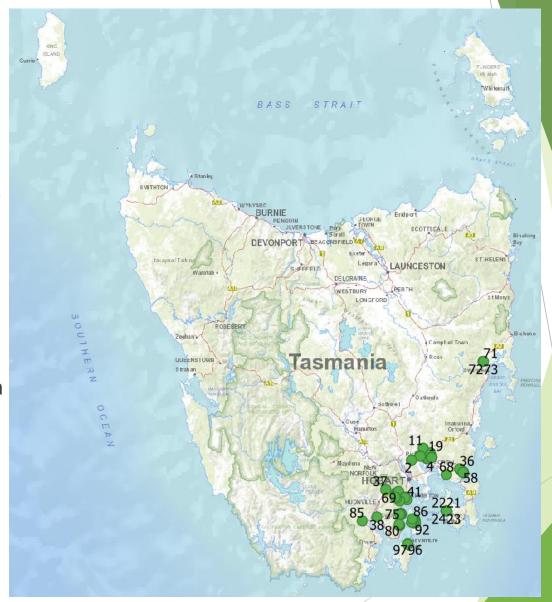

Fang Zhao, PhD Candidate, UTAS

Dams as habitat

- Biodiversity in dams/ponds
 - Macrophytes, phytoplankton, macroinvertebrate, wetland plants, turtles, frogs, birds
- Variables affect species richness and composition
 - ▶ Water depth (Stomp et al. 2011; Queiroz et al. 2015)
 - ▶ Dam size (Santi et al. 2010; Hassall et al. 2011)
 - ► Turbidity (Dragonmir et al. 2018)
 - pH, conductivity (Bloechl et al. 2010)
 - ► Emergent aquatic plant (Nakanishi et al. 2014)
 - ▶ Bank vegetation type (Lemckert et al. 2006)

Dams in Tasmania

- Water Management Act 1999
 - Water Information System of Tasmania (WIST)
 - Permit for dams
- Number of registered dam
 - > 7,719 in 2007
 - 9,404 in 2015 (9,331 nonhydro dams)
- Purpose of dams
 - ▶ Irrigation, stock, domestic use


S Campbell 2015, pers comm.

Aim

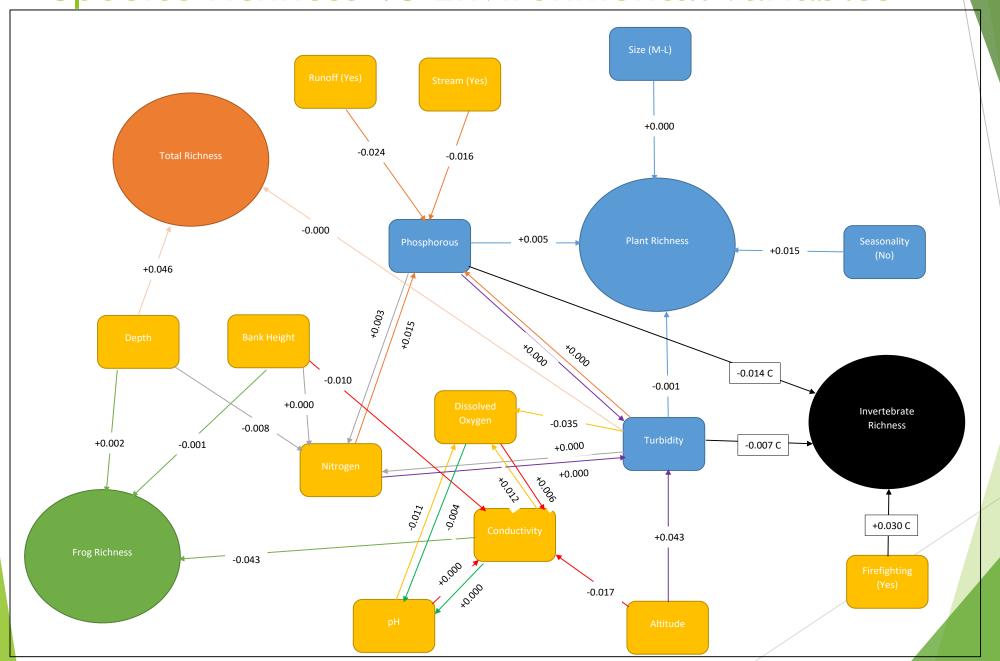
- Aim: Determine the relationship of species richness and composition with environmental variables
 - Plant, macroinvertebrate and frog species richness and composition
 - Physical variables altitude, depth, size, age, seasonality, bank height, slope, water source, dam purpose
 - Chemical variables pH, turbidity, conductivity, dissolved oxygen, nitrogen, phosphorous and sodium
 - ▶ Biological variables richness and composition of each taxonomic group

Dam survey

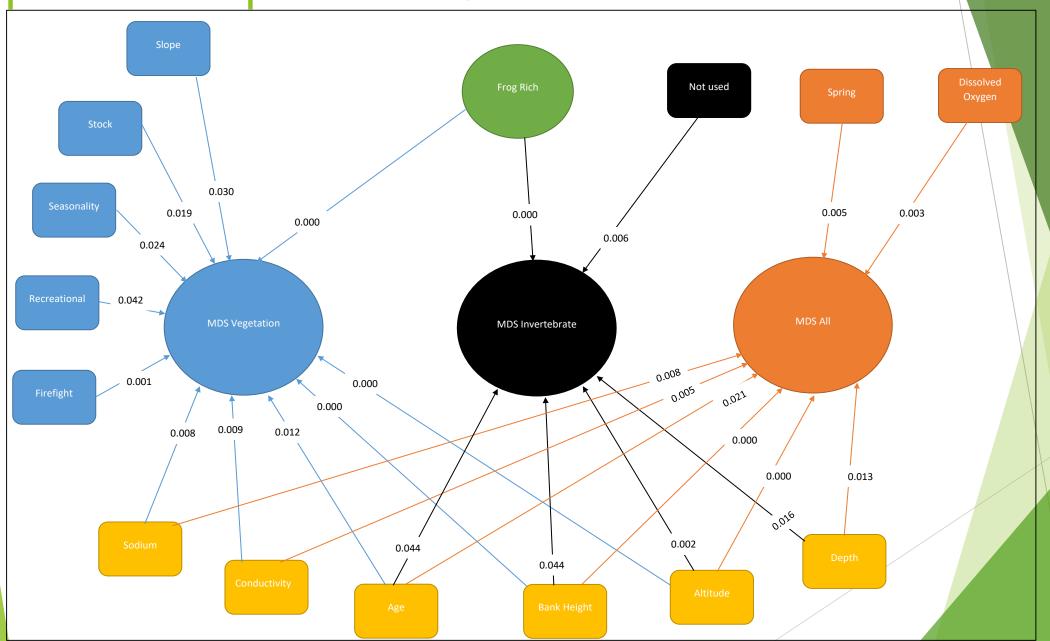
- ▶ 104 dams in south-eastern Tasmania
 - Private and public land
 - Oct to Dec, 2016 and 2017
- Field
 - Physical and chemical variables
 - Species and water sample collection
- Lab data
 - Species identification
 - Chemical variables Water quality

Results - Environmental variables

- Most dams:
 - ▶ Not dry in last 5 years (80%)
 - Surface area < 1000 m² (70%)
 - > 10 years old (90%)
 - Multiple water sources
- Water quality vary
 - ▶ pH: 6.5-8.9
 - ▶ Nitrogen: 0.01 15.2 (mg/l)
 - Phosphorous: 0.1 31.0 (mg/l)



Results - Species richness


- Total 261 species, including
 - ▶ 114 macroinvertebrate taxa
 - ► 6 frog taxa
 - From 63 dams
 - ► No rare/threatened species
 - ▶ 141 vascular plant taxa
 - ► Four endemic species
 - ► Three rare species

Species richness VS Environmental variables

Species composition VS Environmental variables

Planning dams for conservation outcomes

- Design dams for specific conservation outcomes
 - High plant species richness Clean deep permanent water with high phosphorous
 - High macroinvertebrate species richness controlled disturbance, high water level and limited aquatic plants
 - ▶ High frog species richness deep water dam on flat area or gentle slope
 - ► High richness in all taxonomic groups large permanent dams for domestic use, deep clean water and limited disturbance

Summary

- Dams provide habitat for plant, macroinvertebrate and frog species in TAS
- ► Total 261 species observed in 104 surveyed dams
- Significant relationships between species richness and composition and environmental variables
- Possible to design dams to maximise species diversity values

References

- 1. Bloechl, A, Koenemann, S, Philippi, B & Melber, A 2010, Abundance, diversity and succession of aquatic Coleoptera and Heteroptera in a cluster of artificial ponds in the North German Lowlands, Limnologica Ecology and Management of Inland Waters, vol. 40, no. 3, pp. 215-225.
- 2. Dragomir, M, Dragomir, A & Murariu, D 2018, Correlation data between habitat variables and the presence of breeding bird species subject to protection in the Nature 2000 site ROSPA0071 Lower Siret Meadow, eastern Romania, North-western Journal of Zoology, vol. 14, no. 1, pp. 96-101.
- 3. Lemckert, F., Haywood, A., Brassil, T. & Mahony, M. 2006, Correlations between frogs and pond attributes in central New South Wales, Australia: What makes a good pond?, Applied Herpetology, Vol. 3, pp. 67-81.
- 4. Hassall, C, Hollinshead, J & Hull, A 2011, Environmental correlates of plant and invertebrate species richness in ponds, Biodiversity and Conservation, vol. 20, no. 13, pp. 3189-3222.
- 5. Nakanishi, K, Nishida, T, Kon, M & Sawada, H 2013, Effects of environmental factors on the species composition of aquatic insects in irrigation ponds, *Entomolgical Science*, Vol. 17, Issue 2, pp. 251-261.
- 6. Queiroz, CS, Silva, FR & Rossa-Feres, DC 2015, The relationship between pond habitat depth and functional tadpole diversity in an agricultural landscape, Royal Society Open Science, Vol. 2, pp. 150-165.
- 7. Santi, E, Mari, E, Piazzini, S, Renzi, M, Bacaro, G & Maccherini S 2010, Dependence of animal diversity on plant diversity and environmental factors in farmland ponds, Community Ecology, Vo. 11, No. 2, pp. 232-241.
- 8. Stomp, M., Huisman, J., Mittelbach, G.G., Litchman, E. & Klausmeier, C.A. 2011, Large-scale biodiversity patterns in freshwater phytoplankton, *Ecological Society of America*, Vol. 92, Issue 11, pp. 2096-2107.
- 9. Water Management Act 1999 (Tasmania)
- 10. Water Information System of Tasmania (WIST) 2015, Water Entitlements and Dam Permits, Water Information System of Tasmania, Tasmania, viewed 06 July 2015, http://wrt.tas.gov.au/wist/ui?command=content&pageSequenceNo=6&click=[5]. Name#fopt>.